
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Optimization of Join Queries on Distributed Relations Using

Semi-Joins

Suresh Sapa
1
, K. P. Supreethi

2

1, 2JNTUCEH, Hyderabad, India

Abstract

The processing and optimizing a join query in distributed

database system using sequence of semi-joins has been done by

using semi-join based algorithm. The main objective of this

kind of algorithm is to predict the best execution plan for a join

query retrieving data from two or more remote computers.To

accomplish this, the two major components are query rewriter

and query optimizer, but we focus on query optimizer part,

particularly, on cost based query optimization. The algorithm

which has been used to optimize a join query is SDD-1

algorithm, which uses semi-joins concept extensively. The

objective function of SDD-1 is to minimize total

communication time.

Keywords: Distributed database, semi-joins, query

optimization, distributed relations, semi-join based

algorithm, optimization techniques, query processing.

1. Introduction

1.1 Distributed Database System

Distributed database is a collection of multiple, logically

interrelated databases over a computer network. Simply,

it is a collection of data which belong logically to the

same system but are spread over a network of

interconnected systems. A distributed database

management system is then defined as the software

system that permits the management of the DDBS and

makes the transparent to the users. The two

important terms in these definitions are “logically

interrelated” and “distributed over a computer network”.

[1, 2]The sample distributed database environment looks

like:

Figure 1 : Distributed database environment

1.2 Query Processing

Query Processing is the process of translating a high-

level query (i.e., in relational calculus) into an equivalent

lower-level query (i.e., in relational algebra). Query

Processor helps to simplify and facilitate the access to

the database.

The input to the query processor must be a relation

calculus query.

Figure 2 : Query Processing

Query decomposition is the initial step where scanning,

parsing and validation of an input query are done. It

IJREAT International Journal of Research in

ISSN: 2320 – 8791 (Impact Factor: 1.479

www.ijreat.org

 Published by: PIONEER RESEARCH &

decomposes distributed calculus query into an algebraic

query on distributed relations. The main role of

localization is to localize the query’s data using data

distribution information. We see information about

Query optimization in section 1.3. In the next step, c

would be generated for the selected execution strategy;

this code is the executed in either compiled or

interpreted mode to produce the query result

1.3 Query Optimization

Query optimization refers to the process of producing a

query execution plan (QEP) which represents an

execution strategy for the query. The selected plan

minimizes an objective cost function. The cost function

can be expressed with respect either the total time or

response time.

A Query Optimizer, the software module that performs

query optimization and is usually seen as three

components: a search space, a cost model, and a search

strategy [1].

Figure 3 : Query Optimization Process

A. The search space is a set of alternative execution

plans to represent the input query. These plans are

equivalent, in the sense that they yield the same

result but they differ on execution order of operations

and the way these operations are implemented, and

therefore on performance.

B. The search strategy explores the search space and

selects the best plan, using the cost model.

C. An optimizer’s cost model includes cost functions to

predict the cost of operators, statistics and base data

and formulas to evaluate the sizes of intermediate

results. The cost model must have good knowledge

about the distributed execution environment.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr

: 1.479)

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

decomposes distributed calculus query into an algebraic

The main role of data

is to localize the query’s data using data

information about

In the next step, code

would be generated for the selected execution strategy;

this code is the executed in either compiled or

interpreted mode to produce the query result [5, 6].

refers to the process of producing a

query execution plan (QEP) which represents an

The selected plan

minimizes an objective cost function. The cost function

can be expressed with respect either the total time or

, the software module that performs

query optimization and is usually seen as three

components: a search space, a cost model, and a search

: Query Optimization Process

is a set of alternative execution

plans to represent the input query. These plans are

equivalent, in the sense that they yield the same

result but they differ on execution order of operations

and the way these operations are implemented, and

explores the search space and

selects the best plan, using the cost model.

includes cost functions to

predict the cost of operators, statistics and base data

s of intermediate

The cost model must have good knowledge

about the distributed execution environment.

2. Related Work

Many research projects and a few commercial systems

have implemented and evolved the concept of distributed

query optimization.

Mariposa [4] is a distributed database research system,

which proposed the use of an

main idea behind the economic paradigm is to integrate

the underlying data sources into a computational

economy that captures the autonomous nature of various

sites in the federation. A significant goal of Mariposa

was to demonstrate the global efficiency of this

economic paradigm. In terms of distributed load

balancing, the “global efficiency” is closely related to

the reason why we need to consider run

However, the paradigm is built on the assumption that

each site has total local autonomy to determine the cost

to be reported for an option, and can take into account

factors such as resource consumptions and hard

conditions. There are a few controversies over this

assumption: (1) the fully decoupled costing process

without a global coordinator / mediator cannot ensure

quality of query answering; (2) the requirements for data

sources that want to join in the system

Several approaches have been proposed to enumerate

over the search space of equivalent plans for a given user

query. These include randomized solutions such as

Iterative Improvement (II) and Simulated Annealing

(SA) [23] and heuristic-based

minimum selectivity heuristic [19]. This heuristic is

described further in section 2.3.2. Query re

and query simplification [12] techniques

recently explored where the query graph is restricted in

an attempt to reduce the complexity of the optimization.

Iterative Dynamic Programming (IDP) was proposed in

[9] in 2000 to overcome the space complexity problem

of DP. However, DP and IDP do not consider the

structure or join graph, which consequently leads t

to consider cross products. Cross products are costly and

result from joining relations together that

join condition present. The DPccp algorithm proposed in

[21] in 2006 uses the join graph of a query to perform

dynamic programming witho

products. DPccp still has the same worst case running

time as DP (in the case where a clique query is being

optimized) but in practise it produces

savings in time when optimizing chain and cycle queries.

Garlic at IBM [7] is the first research project to exploit

the full power of a standard relational database (DB2).

The wrapper architecture and cross

Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

DEVELOPMENT GROUP (www.prdg.org) 2

Many research projects and a few commercial systems

have implemented and evolved the concept of distributed

] is a distributed database research system,

which proposed the use of an economic paradigm. The

main idea behind the economic paradigm is to integrate

the underlying data sources into a computational

autonomous nature of various

sites in the federation. A significant goal of Mariposa

was to demonstrate the global efficiency of this

economic paradigm. In terms of distributed load

balancing, the “global efficiency” is closely related to

need to consider run-time condition.

However, the paradigm is built on the assumption that

each site has total local autonomy to determine the cost

to be reported for an option, and can take into account

factors such as resource consumptions and hard-ware

conditions. There are a few controversies over this

assumption: (1) the fully decoupled costing process

without a global coordinator / mediator cannot ensure

quality of query answering; (2) the requirements for data

sources that want to join in the system will be high.

Several approaches have been proposed to enumerate

equivalent plans for a given user

query. These include randomized solutions such as

nt (II) and Simulated Annealing

based methods such as the

uristic [19]. This heuristic is

further in section 2.3.2. Query re-writing [25]

and query simplification [12] techniques have also been

recently explored where the query graph is restricted in

to reduce the complexity of the optimization.

Iterative Dynamic Programming (IDP) was proposed in

the space complexity problem

of DP. However, DP and IDP do not consider the query

structure or join graph, which consequently leads them

products. Cross products are costly and

result from joining relations together that do not have a

join condition present. The DPccp algorithm proposed in

2006 uses the join graph of a query to perform

dynamic programming without considering cross

products. DPccp still has the same worst case running

DP (in the case where a clique query is being

optimized) but in practise it produces considerable

zing chain and cycle queries.

] is the first research project to exploit

the full power of a standard relational database (DB2).

The wrapper architecture and cross-source query

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

optimization of Garlic are now fundamental components

of IBM‟s federated database offerings [9]. Later, Garlic

developed a complicated framework for cost-based

query optimization across sources [8]. However, all cost

factors and cost formulas used in the framework are

within the context of traditional query optimizer.

Features of distributed system such as hardware

conditions and run-time conditions of data sources were

not studied in Garlic.

3. Preliminary

3.1 Proposed Method

One important observation in query optimization over

distributed database system is that run-time conditions

(namely available buffer size, CPU utilization in

machine and network environment) can significantly

affect the execution cost of a query plan. It is a

challenging problem, because considering run-time

conditions of remote sites will bring extra complexity to

the optimizer.

This paper proposes EFFICIENT QUERY OPTIMIZER

while efficiently considering these runtime conditions.

Semi-join based Algorithm

Semi-join operation can be used to decrease the total

time of join queries. The semi-join acts as a size reducer

for a relation much as a selection does. It is said to be a

better approach if the semi-join acts as a sufficient

reducer, i.e., if only a few tuples of a relation participates

in the join.

Let us consider an example of a program to compute a

join EMP ASG PROJ is EMP’ ASG’

 PROJ.

Where EMP’ = EMP ASG

ASG’= ASG PROJ.

We can even reduce the size of an operand relation by

using more than one semi-join. It can be derived as

EMP’’=EMP (ASG PROJ).

If size(ASG PROJ) <= size(ASG) then the result

could be size(EMP’’) <= size(EMP’). In this way, EMP

can be reduced by the sequence of semi-joins. Such a

sequence of semi-joins is called as ‘semi-join program’

for EMP.

Similarly for PROJ relation could be reduced by the

semi-join program,

PROJ’’= PROJ (ASG EMP).

Not all relations involved in a query need to be reduced;

ignore relations that are not involved in final joins.

There exist many semi-join programs for a particular

given relation. But there is only one optimal semi-join

program, called the Full Reducer [12]. A simple method

is to evaluate the size reduction of all possible semi-join

programs and to select the best one.

The problems with this enumerative approach are:-

1. Cyclic Queries are the queries which have

cycles in their join graph for which full

reducers cannot be found.

2. Tree Queries for which full reducers exists, but

the problem of finding them is NP-hard.

The solutions for 1, is to transform the cyclic graph in a

join graph into an equivalent acyclic graph by removing

one arc of the graph and adding appropriate predicates

to the other arcs.

Figure 4 : Transformation of Cyclic Query

In this graph, the removed predicate is preserved by

transitivity [13].

3.2 Assumptions and Other Restrictions

Below is the list of current assumptions and restrictions.

These assumptions make our problem feasible and hold

in almost all real systems.

� The physical database design of each data source

would be known.

� The Statistical information about the data should be

known before query execution.

� Queries are answered based on up-to-date

knowledge.

� The optimizer’s cost model must have good

knowledge about distributed execution environment.

� Semi-join based algorithm is studied in this paper;

when estimate resources consumed in a data source

by a query, our proposed algorithm can be used to

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

optimize a query on distributed relations that costs

less.

4. Experimental Setup and Evaluation

Let us consider two phases; first phase deals with

distributed database environment and retrieves data from

different sites. Second phase deals with optimizing the

query in terms of time, that is, either total time or

response time.

Phase I:

Initially, I have considered five systems which can

communicate through LAN among themselves and the

data which consists of crime statistics of each US state

from 1960-2005. The data what I considered is

downloaded from [14] in csv file format, later I stored

into database using a JDBC application.

Instead of all US states, I have considered only five

states data (Arizona, Texas, New york, Florida,

California) and distributed among five sites (systems) in

such a manner that each site consists of one particular

state data, as shown in figure 5.

Figure 5 : Distributed Database Environment

Now, distributed database environment is developed in

such a fashion that, from any site (system), we can

retrieve information from other four sites. It can be

achieved through Socket programming where it gets

given query as input through input stream and sends

result of query as output through output stream. The

distributed data information is captured in a file. By

using this, our application knows from which site to

retrieve data as per user request.

The block diagram of this application is,

Figure 6 : Block Diagram

Whenever user sends a query, they might think that data

are stored at single site and required information is

retrieving from this current site only, not from other

remote sites, but it is false. This is what we call

transparency.

A query input screen is just like a SQL command

prompt, but the difference is sql prompt retrieves data

from current site where our query screen can retrieve

data from current site as well as remote sites based on

query we given.

A query has to be given at input screen and the query is

evaluated at query site of origin, retrieves information

from required sites and displays it to the user.

Phase II:

To optimize any query, we need to go through an

optimization technique. Here, I have considered SDD-1

algorithm to perform optimization of query.

Let us see how optimization technique works with this

algorithm.

SDD-1 Algorithm:

SDD-1 is derived from hill climbing algorithm. Hill-

climbing algorithm is the first distributed query

processing algorithm [15]. It has been substantially

improved in SDD-1 in a number of ways. The improved

version makes extensive use of semi-joins. The objective

function is expressed in terms of total communication

time. Finally, this algorithm uses statistics on database,

called database profiles, where each profile is associated

with a relation.

The main step of the algorithm consists of determining

and ordering beneficial semi-joins, that is semi-joins

whose cost is less than their benefit. The cost of a semi-

join is that of transferring the semi-join attribute A.

While its benefit is the cost of transferring irrelevant

tuples of R which is avoid by semijoins.

Cost(R A S) = TMSG + TTR * size (A (S))

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

Algorithm:-

Input: QG: query graph with n relations; statistics for

each relation.

Output: ES: execution strategy

begin

 ES � local-operations (QG).

 Modify stats to reflect the effect of local processing.

 BS � null {set of beneficial semi-join}

 for each semi-join SJ in QG do

 if cost(SJ) < benefit(SJ) then

 BS � BS U SJ.

 end-if.

 end-for

 while BS != null do {selection of beneficial semi-join}

 begin

 Sj � most_beneficial(BS) {SJ: semijoin with

max(benefit-cost)}

 BS � BS - SJ {remove SJ from BS}

 ES � Es + SJ {append SJ to execution strategy}

 Modify stats to reflect the effect of incorporating SJ

 BS � BS – non beneficial semi-joins

 BS � BS U new beneficial semi-joins

end-while

{assembly site selection}

AS(ES) � select site i such that i stores the largest

amount of data after all local operations

ES � ES U transfers of intermediate relations to AS(ES)

{post optimization}

for each relation Ri at AS(ES) do

 for each semijoin SJ of Ri by Rj do

 if cost(ES) > cost(ES-SJ) then

 ES � ES – SJ

 end-if

 end-for

 end-for

end.

This algorithm proceeds in four phases: initialization,

selection of the beneficial semi-joins, assembly site

selection, and post optimization. The output of the

algorithm is a global strategy for executing the query.

The initialization phase generates a set of beneficial

semi-joins, BS={SJ1, SJ2, SJ3, … , SJk} and an execution

strategy that includes only local processing. The next

phase selects the beneficial semi-joins form BS by

iteratively choosing the most beneficial semi-join, SJi,

and modifying the database statistics and BS

accordingly. The modification affects the statistics of

relation R involved in SJi and the remaining semi-joins

in BS that use relation R. The iterative phase terminates

when all semi-joins in BS have been appended to the

execution strategy. The order in which semi-joins are

appended to ES will be the execution order of the semi-

joins. The next phase selects the assembly site by

evaluating, for each candidate site, the cost of

transferring to it all the required data and taking the one

with the least cost. Finally, a post optimization phase

permits the removal from the execution strategy of those

semi-joins that affect only relations stored at the

assembly site. This phase is necessary because the

assembly site is chosen after all the semi-joins have been

ordered. The SDD-1 optimizer is based on the

assumption that relations can be transmitted to another

site. This is true for all relations except those stored at

the assembly site, which is selected after beneficial semi-

joins are considered. Therefore, some semi-joins may

incorrectly be considered beneficial. It is the role of post

optimization to remove them from the execution

strategy.

By using this algorithm, we can optimize join queries.

5. Conclusion

In this paper, we have presented the basic concepts of

distributed query optimization and the semi-join based

algorithm i.e., SDD-1 Algorithm is considered as best

technique to optimize a query on distributed relations.

Important inputs to the query optimization problem are

the database statistics and the formulas used to estimate

the size of intermediate results.

SDD-1 Algorithm computes joins with semi-joins. Semi-

joins can act as powerful size reducers only when a join

has a good selectivity. Semi-joins implemented by hash

bit arrays [10] are shown in [11] to be very beneficial.

Like its predecessor hill-climbing algorithm, the SDD-1

algorithm selects locally optimal strategies. Therefore, it

ignores the higher-cost semi-joins which could result in

increasing the benefits and decreasing the costs of other

semi-joins. Finally, this query optimization technique

works very well.

References

[1] “Principles of Distributed database systems” - M.Tamer

OZSU and Patrick Valduriez . Chapther 7, 8,9, pp 188-

271.

[2] “Distributed databases principles and systems”- Stefano

ceri and pelagatti.

[3] Oszu, M. T. and Valduriez P., “Distributed and Parallel

Database Systems,” in Trucker A. (Ed), The Computer

Benefit(R A S) = (1-SFSJ(S.A))*TTR*size (A (S))

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

Science and Engineering Handbook, CRC press, pp.

1093-1111, 1997.

[4] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A.

Sah, J. Sidell, Carl Staelin, A. Yu. Mariposa: “A wide-

area Distributed Database System”. The VLDB Journal,

1996.

[5] Elmasri R. and Navathe S. B., “Fundamentals of Database

Systems”, Reading, MA, Addison-Wesley, 2000.

[6] Ioannidis Y. E., “Query Optimization,” in Trucker A.

(Ed), The Computer Science and Engineering Handbook,

CRC press, pp. 1038-1054, 1996.

[7] IBM Research, The Garlic Project,

http://www.almaden.ibm.com/cs/garlic/.

[8] M. T. Roth, F. Ozcan, L. Hass. “Cost Models Do Matter”,

Providing Cost Information for Diverse Data Sources in a

Federated System. VLDB 1999.

[9] L. M. Haas, E. T. Lin, M. A. Roth,” Data Integration

through Database Federation”, IBM System Journal,

VOL. 41, No 4, 2002

[10] P. Valduriez. “Semi-Join Algorithms for Distributed

Database Machines”. In J.-J. Schneider (ed.,), Distributed

Data Bases, Amsterdam: North-Holland, 1982, pp 27-37.

[11] L.F. Mackert and G. Lohman. “R* Optimizer Validation

and Performance Evaluation for Local Queries”. In

proc.ACM SIGMOD Int. conf. on Management of Data,

May 1986, pp 84-95.

[12] D.M. Chiu and Y.C Ho. “A Methodology for Interpreting

Tree Queries into Optimal Semi-join Expressions”. In

proc. ACM SIGMOD Int, conf. on Management of Data,

May 1980, pp 169-178.

[13] Y. Kambayashi, M.Yoshikawa and S.Yajima. “Query

Processing for Distributed Databases using Generalized

Semi-joins”. In proc. ACM SIGMOD Int. Conf. on

Management of Data, June 1982, pp 151-160.

[14] http://hci.stanford.edu/jheer/workshop/data/

[15] E. Wong. “Retrieving Dispersed Data from SDD-1”. In

Proc. 2nd Berkeley Workshop on Distributed Data

Management and Computer Networksm 1977, pp 217-

235.

